

INSTANT SEARCH - HSMW_TUC Team

TRECVID 2019

Tony Rolletschke - University of Applied Science Mittweida

Introduction - Team

Our INS approach with pretrained models and web based interactive evaluation by using a management system

Who is hiding behind 'our'?

- Rico Thomanek
- Christian Roschke
- Benny Platte
- Tony Rolletschke
- Tobias Schlosser
- Manuel Heinzig
- Danny Kowerko
- Matthias Vodel
- Frank Zimmer
- Maximilian Eibl
- Marc Ritter

Introduction - Focus

Our INS approach with pretrained models and web based interactive evaluation by using a management system

- We mainly wanted to improve and extend our system from last year
- While using the same hardware we could increase the system performance significantly
- That was the result of a new approach with distributed clusters administrated by a management system
- The focus was on high adaptability, which enables processing tasks in different application domains

Holistic server-client approach

Database

- Handles the persistent storage
- All data can be accessed by an API

Management

- Ad or remove processing nodes
- Tasks can allocated with different nodes
- Automatic task completion
- Error handling

Distribution with docker

System - Architecture

Distribution with docker

Distribution without manual configuration

Section Section Control Contro

- Containers to be run multiple times on each node
- Each host can run on maximum load

State-of-the-art frameworks to identify people and objects:

State-of-the-art frameworks to identify people and objects:

- Detectron
- Yolo9000
- FaceNet
- OpenFace
- FaceRecognition
- TuriCreate

Object detection with *Detectron*:

Source: R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollár, und K. He, Detectron. 2018.

Real-time object detection with *Yolo9000*.

Source: Joseph, R. and Ali, F., 2016. Yolo9000: Better, faster, stronger. arXiv preprint arXiv:1612.08242

Face recognition with *OpenFace*:

Source: Amos, Brandon and Bartosz Ludwiczuk and Satyanarayanan, Mahadev, OpenFace: A general-purpose face recognition, 2016

Detect and recognize faces with Face Recognition:

Simplify the development of custom machine learning models with Turi Create:

ML Task	Description
Recommender	Personalize choices for users
Image Classification	Label images
Drawing Classification	Recognize Pencil/Touch Drawings and Gestures
Sound Classification	Classify sounds
Object Detection	Recognize objects within images
One Shot Object Detection	Recognize 2D objects within images using a single example
Style Transfer	Stylize images
Activity Classification	Detect an activity using sensors
Image Similarity	Find similar images
Classifiers	Predict a label
Regression	Predict numeric values
Clustering	Group similar datapoints together
Text Classifier	Analyze sentiment of messages

Source: https://github.com/apple/turicreate

- Localization of the absolute position
 - Detectron 2.515.332 person objects
 - Face Recognition 1.384.747 faces
 - YOLO9000 1.013.007 person objects
 - Each results stored separate in database table

- Localization of the absolute position
 - Detectron 2.515.332 person objects
 - Face Recognition 1.384.747 faces
 - YOLO9000 1.013.007 person objects
 - Each results stored separate in database table
- Person recognition
 - Classification of the persons
 - Usage of models trained on dataset collected with google-imagedownloader

- Create ground truth data
 - Usage of google-image-downloader
 - Collection an average of 150 images/ person
 - Cut out faces with Face Recognition
 - Train person models with three frameworks

 Merging the results of all frameworks to a person score

$$predPerson = \sum_{h=0}^{r} (x_h \in K),$$
 (1)

$$K = \{x \mid 0 \le x \le 100\},$$
 (2)

$$predPerson \in L$$
, (3)

$$L = \{y \mid 0 \le y \le 900\}.$$
 (4)

Scoring Results

- We developed 2018 a web-service for interactive evaluation
- The findings from the visual processing not include in the automatic evaluation
- Number of fail detections decrease with increasing sore

Different approaches for activity recognition

- Self-developed activity classifier
 - Create our own suitable synthetic ground truth dataset
 - Extracting body-key-points based on the results by OpenPose
 - Able to predict activities in realtime

Different approaches for activity recognition

- Object Activity classifier (Detectron, YOLO9000, Custom-Model)
 - The classifier was trained with 9504 images showing drinking, eating, hodingBaby, holding- Glass, holdingPhone, hugging, laughing and kissing
 - Images are downloaded with GoogleDownloader and manually labelled using "RectLabel" software
 - The object recognition classify and localize the activities

Source: Screenshot macOS app "RectLabel"

Fusion of the determined scoring values

- The fusion took place exclusively in the database
- Linked the various framework results with suitable SQL statements
- An overall score is be calculated with the person and activity recognition results

Conclusion

Our INS approach with pretrained models and web based interactive evaluation by using a management system

- The system compute twelve times more frames as last year in the same time
- So we significantly improved performance
- The using of the distributed approach lets us calculate parallel on serval machines
- A functional optimization of the newly developed parts follows next year
- So an increase in result quality after refinement is expected
- This was a practical evidence, that our optimized application is able to handle the provided data in an acceptable computational time
- With the focus on high adaptability the system could be extended every time by frameworks of other application domains